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Abstract
The hydrogen atom is a fundamental exactly soluble system for which
the Wigner function, being a quantum analogue of the joint probability
distribution of position and momentum, is unknown. In this paper, we
present an effective method of calculating the Wigner function, for all bound
states of the nonrelativistic hydrogen atom. The formal similarity between
the eigenfunctions of the nonrelativistic hydrogen atom in the momentum
representation and the Klein–Gordon propagator has allowed the calculation of
the Wigner function for an arbitrary bound state of the hydrogen atom, using
a simple atomic integral as a generator. These Wigner functions for some
low-lying states are depicted and discussed.

PACS numbers: 03.67.−a, 42.50.Dv, 03.65.Ta

(Some figures in this article are in colour only in the electronic version)

Due to the discovery of quantum phase space tomography, Wigner functions have been
experimentally reconstructed for quantum states of light, vibrational modes of molecules and
superpositions of diffracted cold atoms by a double slit [1]. It has been discovered recently
that the phase space plots of the Wigner function provide a unique visualization of the quantum
state that can unravel such unique quantum properties like entanglement of correlated systems
[2] or the phase space sub-Planck structures of quantum interference [3]. Because of all these
reasons an analytical formula for the Wigner function, of such a fundamental system like the
hydrogen atom, can be useful for quantum tomography, quantum state diagnostic and phase
space visualization of negative structures of quantum interference.

However, despite the existence of analytical expressions for the hydrogen atom
wavefunctions in position and momentum representations [4], the form of the phase space
Wigner function is unknown. Analytical formula for the Wigner function is not even known
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for the 1s state of the hydrogen atom. In the literature one can find only a limited number
of papers devoted to this subject that are based on approximate methods [5, 6], and the only
other published result has generated controversies [7]. In a different context, the hydrogen
atom has been investigated recently using the Kirkwood–Rihaczek phase space representation,
which is easier because it involves only products of the momentum and position wavefunctions
with a proper phase [8]. This rather vexing situation regarding the analytical form of Wigner
functions for the hydrogen atom indicates that the calculation of the phase space representation
for the hydrogen requires a new approach based on a new method or a calculational trick to
overcome the old difficulties.

It is the purpose of this paper to present an analytical computational scheme for the
calculation of the phase space Wigner function for arbitrary bound-energy eigenfunction of
the hydrogen atoms in terms of a set of generating differential operators acting on a simple
single integral. This general ‘hydrogen atom integral’ (HAI), dependent on the Bohr radius
and other geometrical parameters of the hydrogen eigenfunction, can be easily calculated
numerically.

It happens that the methods of investigating integrals, similar to the one defining the
Wigner function for the bound states of hydrogen atom, are known, but have been used in an
entirely different physical context. Surprisingly, the integrals defining the Wigner function
for the states of the hydrogen atom are formally nearly the same as ‘two-centre integrals’
investigated in the theory of charge exchange during hydrogen–proton collisions. Such
integrals have been studied for collisions of other heavy particles. In [9], a very general and
effective method of reducing ‘two-centre integrals’ to a single integral has been introduced.
In the papers that followed, this method has been developed further [10–12]. Methods
introduced in the theory of charge exchange in the hydrogen–proton collisions, especially
numerical methods of calculations of ‘two-centre integrals’, can be used for obtaining the
Wigner function. However, our method of reducing the calculation of the Wigner function
to a single integral does not use these results and has a more direct character. The technical
tricks in our method are closer in spirit to the techniques used in [13]. It is also worth
noting that we calculate slightly different integrals, as in our case there are no 1

r
factors

coming from the interaction term of hydrogen–proton scattering Hamiltonian essential in the
integrals investigated in [9–13]. Moreover, despite formal similarities, we solve an entirely
different physical problem. We believe that the results presented in this paper after some
modifications may be adapted for investigations of hydrogen–proton collisions with more
complicated configurations (hyperbolic trajectory of motion, etc)

The paper is constructed in the following way: first we present a general formula that
reduces the Wigner function of the bound states of the hydrogen atom to a single integral.
Using this formula we calculate the Wigner function for the following bound states: 1s, 2s,
2p0, 2p1. Then we present more details of the calculation leading to the formula for the Wigner
function of bound hydrogen atom states as a single integral. We derive the hydrogen atom
integral (HAI) and describe a method allowing the calculation of the Wigner function for an
arbitrary hydrogen atom bound states �nlm from this integral.

Phase space description, namely the Wigner function of a state, provides a natural
generalization of joint position and momentum distribution. The Wigner function
corresponding to a state vector |ψ〉 (for h̄ = 1) is defined as follows [14]:

Wψ(�r, �k) =
∫

d3q

(2π)3
ψ∗(�r + �q/2) ei�q�kψ(�r − �q/2)

=
∫

d3q

(2π)6
ψ̃∗(�k + �q/2) e−i�q�r ψ̃(�k − �q/2). (1)
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In this formula we have exhibited the symmetry of the Wigner function with respect to position
ψ(�r) and momentum ψ̃(�k) representations of the state vector. As it is well known the Wigner
function for most quantum states can take negative values and is bounded to the interval
1
π3 [−1, 1], with marginals in �r and �k corresponding to momentum (wave vector with h̄ = 1)
and position quantum probability distributions. In the classical limit the Wigner function
becomes a classical phase space distribution. These and other properties of the Wigner
function with its applications in various branches of physics have been reviewed in a number
of articles and books [15–17]. It is well known that Wigner function given by equation (1) can
be easily calculated, analytically or numerically, for most one-dimensional systems. In the
case of three-dimensional problems, especially the ones with spherical symmetry, calculations
are usually much more difficult. Integrals become quite cumbersome and in most cases
impossible to handle analytically.

Before we present the outline of the technical features of our general approach, we first
summarize the main results and illustrate the power of our method showing for the first time
exact phase space plots of the hydrogen in the Wigner representation. The main result of our
paper can be written in the form of the following formula for the phase space Wigner function
for the hydrogen energy eigenvectors of bound states:

Wψnlm
(�r, �k) = Dnlm

(
∂

∂�r ,
∂

∂b1
,

∂

∂b2

)
I (r, k, �r�k, b1, b2)

∣∣∣∣
b1=b2=1/na

. (2)

The form of this HAI is

I (r, k, �r�k, b1, b2) =
∫ 1

0
du exp(4iu�r�k)

1

C(u)
exp(−2rC(u)) (3)

where

C(u) =
√

ub2
1 + (1 − u)b2

2 + 4u(1 − u)k2. (4)

The HAI depends on three scalars only: r = |�r|, k = |�k| and �r�k = rk cos θ . The two arbitrary
running parameters b1 and b2 are determined at the end of the calculations only by 1/na,
where n is the principal quantum number and a is the Bohr radius. Formula (3) is the central
result of our paper. It can be used to generate the Wigner function for an arbitrary hydrogen
energy eigenfunction. The HAI plays a role of a generating function for all Wigner functions
of the hydrogen atom. Differential operators Dnlm acting on HAI give Wigner functions for
all bound states of hydrogen atom.

Before we explain how this central result has been obtained, we write the formula for the
Wigner function of the ground state:

Wψ100(�r, �k) = 2 e−2i�k�r

π3a3

∂2

∂
(
b2

1

)
∂
(
b2

2

)I (r, k, �r�k, b1, b2)

∣∣∣∣
b1=b2=1/a

. (5)

One can perform all the derivatives and write the Wigner function as a single integral, but
this lengthy formula is rather useless for this paper, thus we omit it. We note that the Wigner
function for the ground state depends only on three scalars r, k and θ . A very simple numerical
calculations of the HAI leads to the Wigner function for the ground state.

In figure 1, we have depicted contours of 4πr2k2Wψ100(r, k, θ) for selected values of θ .
In all figures, we have fixed the scale setting the Bohr radius a = 1. These figures should be
compared with the only published numerical results obtained 22 years ago in [5]. In figure 2,
we have depicted the same function Wψ100(r, k, θ) multiplied by factor r2k2 for θ = 0 and
θ = π

2 . We see explicitly regions of the phase space where the Wigner function is non-positive.
In the case of �r ⊥ �k, corresponding to θ = π

2 , the motion corresponds to a classical orbit,
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Figure 1. The Wigner function of 1s state multiplied by a factor 4πr2k2. Contour plots to be
compared with those from [5]. Cross sections made for: (a) θ = 0; (b) θ = π

4 ; (c) θ = π
2 .

Dashed lines denote a zero level, dotted lines denote negative values, separate distance between
the contours is chosen as in [5].
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Figure 2. The Wigner function of 1s state multiplied by a factor r2k2: (a) θ = 0; (b) θ = π/2.
Only the cross section obtained for θ = π

2 is a positive function, for all others values of the angle
between position and momentum vectors cross sections have negative values. For θ = 0, we see
explicitly an oscillating structure.

and as a result of this the Wigner function is positive everywhere. For �r‖�k, corresponding
to θ = 0, the Wigner function exhibits non-classical features at distances of several Bohr
radii.

The power of our method can be exhibited further if higher states of the hydrogen atom
are considered. Below we just quote the corresponding differential operators for the 2s state:

D200 = − e−2i�k�r

4π3a3

[
∂

∂b1
− b1

∂2

∂b2
1

] [
∂

∂b2
− b2

∂2

∂b2
2

]
, (6)

where after all the calculations we put b1 = b2 = 1/2a. With a little patience or help from
a symbolic software all the differentiations of the HAI can be performed, and a close form
expression for the Wigner function Wψ200(r, k, θ) from equation (2) can be calculated and
plotted.

In figure 3, contour plots of the 2s Wigner function for various values of θ are presented.
Again, the oscillations of the Wigner function and its negative values are clearly seen.



Hydrogen atom in phase space: the Wigner representation 14147

(a)

0 2 4 6 8 10
r

0

0.5

1

1.5

2
k

(b)

0 2 4 6 8 10
r

0

0.5

1

1.5

2

k

(c)

0 2 4 6 8 10
r

0

0.5

1

1.5

2

k

Figure 3. The Wigner function of the 2s state. Cross sections made for: (a) θ = 0; (b) θ = π
4 ;

(c) θ = π
2 . Dashed lines denote a zero level. Other contours are separated by 0.01.
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Figure 4. The Wigner function of 2p0 state: Plot (a) presents the Wigner function for θ1 = θ2 = 0;
plot (b) shows the same cross section of the Wigner function multiplied by r2k2.

The next example that we want to present in this paper is the 2p0 state. In this case,

D210 = 2 exp(2i�r�k)

(2π)3a5

(
∂

∂b1

1

2b1

∂

∂b1

)(
∂

∂b2

1

2b2

∂

∂b2

)(
∂2

∂z2
+ 4ikz

∂

∂z

)
e−4i�r�k. (7)

The form of this differential operator indicates that the corresponding Wigner function will
depend on the scalars (r, k) and two solid angles describing the orientations of �r and �k. The
Wigner function of the 2p0 state is no longer a function of scalars r, k and �r�k, which is a
consequence of the fact that the wavefunction of this state distinguishes the z axis. As in
all previous cases, a closed-form expression for the Wigner function Wψ210(�r, �k) can be
calculated and plotted. In figure 4, we show cross section of Wψ210(r, k) for θ1 = θ2 = 0
and the corresponding r2k2Wψ210(r, k) plot.

Finally, in figure 5 the Wigner function of 2p1 state (m = 1) is shown. We have plotted
the cross sections of Wψ211(�r, �k) for θ1 = θ2 = π

2 , ϕ1 = 0 and selected values of k as a function
of r and ϕ2. These plots clearly show that the maxima of the Wigner function are reached for
�k perpendicular to �r , which entirely agrees with classical intuition that angular momentum
has the maximum value for such geometry. Thus, the semiclassical features begin to be
visible already in the 2p state. Of course, the classical features are much more pronounced for
larger n.
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Figure 5. The Wigner function of 2p1 state (we have chosen θ1 = θ2 = π
2 , ϕ1 = 0). Red lines

(light grey in black and white pictures) denote a zero level. Plots (a) and (b) show cross section
of the Wigner function for fixed values of momentum k = 0.1 and k = 0.2, respectively. On the
axes are r and the angle between �r and �k. It is seen that maximum is obtained when position and
momentum vectors are perpendicular, which agrees with classical intuition that angular momentum
has the maximum value for such geometry. Plot (c) presents similar cross section of the Wigner
function multiplied by r2k2 for k = 0.5. As we would expect maximum is obtained for ϕ2 = π

2
and r � 4.

In the remaining part of this paper, we illustrate the general calculational scheme explicitly
showing how one can calculate the Wigner function for the ground state of the hydrogen atom.
From our derivation it will be clear that the method is general and can be applied to all bound
states of the hydrogen atoms. Although most of the calculations for higher excited states
look tedious, simple symbolic differentiation of the fundamental HAI formula leads to explicit
expression for the Wigner function with arbitrary quantum numbers.

We have found useful for our calculations to work with wavefunctions in momentum
representation [4]. For the wavefunction of the ground state, we have

ψ̃100(�k) = 8
√

πa3

(1 + k2a2)2
. (8)

It is a regular function that for large k decreases as (ka)−4. Inserting this expression into the
definition of the Wigner function in the momentum representation, equation (1), we obtain

Wψ100(�r, �k) = 29πa

(2πa)6

∫
d3q

exp(−2i�r(�q − �k))[(
1
a2 + q2

)(
1
a2 + (�q − 2�k)2

)]2 . (9)

The power of q in the denominator can be reduced with the help of differentiation over
parameters. The following expression for the Wigner function is obtained:

Wψ100(�r, �k) = 2

π5a3

∂2

∂
(
b2

1

)
∂
(
b2

2

) ∫
d3q

exp(−2i(�q − �k)�r)(
b2

1 + q2
)(

b2
2 + (�q − 2�k)2

) , (10)

where b1 and b2 are the running parameters to be fixed by the Bohr radius at the end of all
calculations. Now comes the key element of the calculation. We recognize that apart from the
phase factor the structure of the integrand in equation (10) has a remarkable formal similarity
to the product of two Klein–Gordon propagators of quantum field theory in momentum space
[18]. Due to this analogy, we shall proceed with our calculations using the standard propagator
disentanglement techniques introduced by Feynman and represented by the following
identity:

1

AB
=

∫ 1

0
du

1

[uA + (1 − u)B]2
(11)
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with A = b2
1 + q2 and B = b2

2 + (�q − 2�k)2 to rearrange the integral in equation (10). After the
rearrangement of terms and substitution �s = �q − 2(1 − u)�k we get

Wψ100(�r, �k) = 2 e2i�k�r

π5a3

∂2

∂
(
b2

1

)
∂
(
b2

2

) ∫ 1

0
du

∫
d3s

exp[−2i(�s + 2(1 − u)�k)�r][
s2 + ub2

1 + (1 − u)b2
2 + 4(1 − u)uk2

]2 . (12)

We recognize in this expression the function C(u) introduced in equation (4). This
simplifies the notation and the integral (12) then becomes

Wψ100(�r, �k) = 2 e2i�k�r

π5a3

∂2

∂
(
b2

1

)
∂
(
b2

2

) ∫ 1

0
du exp(−4i(1 − u)�k�r)

∫
d3s

exp(−2i�s�r)
[s2 + C(u)2]2

. (13)

Fortunately, the integral over d3s is elementary and as a result of all these steps the only
remaining integral is over u. The final formula for the Wigner function is, thus, given by

Wψ100(�r, �k) = 2 e−2i�k�r

π3a2

∂2

∂
(
b2

1

)
∂
(
b2

2

) ∫ 1

0
du exp(i4u�k�r) 1

C(u)
exp(−2rC(u))

Wψ100(�r, �k) = D100

(
∂

∂�r ,
∂

∂b1
,

∂

∂b2

)
I (r, k, �r�k, b1, b2)

∣∣∣∣
b1=b2=1/a

,

(14)

as it has been advertized in equation (2).
This method works for arbitrary state of the hydrogen atom (for details see the appendix).

The key concept in such calculations is to express a given state with quantum numbers (nlm)

in momentum representation as a differential operator acting on the ground state followed by
a change of scale. It is worth noting that these differential operators form an elegant group
theoretical structure, explained for example in [19].

In conclusion, we have noted and exploited the formal similarity between the
eigenfunctions of the nonrelativistic hydrogen atom in the momentum representation and
the Klein–Gordon propagator. This allowed us to find and discuss the Wigner function for
arbitrary bound state of hydrogen atom.
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Appendix

An arbitrary state of hydrogen atom in the momentum representation can be expressed as

ψ̃nlm(�k) = ψ̃nlm

(
�k,

1

na

)
where

ψ̃nlm(�k, b) = Anlm Pm(�k) Zlm(�k) Bnl(b)

[
1

b2 + �k2

]
, (A1)

operators Bnl(b), Pm(�k) and Zlm(�k) are defined as

Bnl(b) :=
n−l−1∑
α=0

1

α!

(
2Z

na

)α(
n + l

α + 2l + 1

)(
∂

∂b

)α+1

, (A2)
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Pm(�k) :=
(

∂

∂kx

+ i sgn(m)
∂

∂ky

)|m|
, (A3)

Zlm(�k) :=
l∑

β=g(|m|+l)

(−1)β(2β)!

(2β − l − |m|)!
(

l

β

)(
∂2

∂k2
1

+
∂2

∂k2
2

+
∂2

∂k2
3

)(l−β) (
∂

∂kz

)2β−l−|m|
, (A4)

g(m+l) =
{ l+|m|

2 for (l + |m|) ∈ 2N

l+|m|+1
2 for (l + |m|) ∈ (2N + 1),

(A5)

and the normalization constant Anlm is given by

Anlm = −4π

(
i

a

)l
(−1)

3|m|−m+2l

2

2l l!(2l + 1)!

(
2Z
an

)3/2( 2Z
n

)l

( n + l

2l + 1

)
√

2l + 1

4π

(l − |m|)!
(l + |m|)!

[
(n + l)!

2n(n − l − 1)!

]1/2

.

(A6)

Following the method of calculation described in the main text of the paper and making use
of formula (A1) the Wigner function of hydrogen atom state ψnlm can be written as

Wψnlm
(�r, �k) = e2i�r�k

8π4

[
AnlmBnl(b1)Olm

(
− i

2

∂

∂�r , b1

)]∗ [
AnlmBnl(b2)Olm

(
− i

2

∂

∂�r , b2

)]

×
[

e−4i�r�k
∫ 1

0
du

e−2rC(u)+4iu�r�k

C(u)

]∣∣∣∣∣
b1=b2=1/na

, (A7)

where operator Olm is defined as

Olm

(
− i

2

∂

∂�r , b

)
=

|m|∑
γ=0

(|m|
γ

)
(i sgn(m))γ

l∑
β=glm

(−1)β(2β)!

(2β − l − |m|)!
(

l

β

)

×
l−β∑
η=0

(
l − β

η

) η∑
ρ=0

(
η

ρ

)
Ul−2η−|m|

(
− i

2

∂

∂r3
,

1

b

∂

∂b

)
U2ρ+γ

×
(

− i

2

∂

∂r2
,

1

b

∂

∂b

)
U2(η−ρ)+|m|−γ

(
− i

2

∂

∂r1
,

1

b

∂

∂b

)
, (A8)

and operator UN is given by

UN

(
− i

2

∂

∂rj

,
1

b

∂

∂b

)
=

[N/2]∑
α=0

N !

α!(N − 2α)! 2α

(
− i

2

∂

∂rj

)N−2α (
1

b

∂

∂b

)N−α

. (A9)

Similarly, the following formula can be introduced:

W(nlm|n′l′m′)(�r, �k; b1, b2) =
∫

d3q

(2π)6
ψ̃∗

nlm(�k + �q/2, b1) e−i�q �r ψ̃n′l′m′(�k − �q/2, b2)

= e2i�r�k

8π4

[
AnlmBnl(b1)Olm

(
− i

2

∂

∂�r , b1

)]∗ [
An′l′m′Bn′l′(b2)Ol′m′

(
− i

2

∂

∂�r , b2

)]

×
[

e−4i�r�k
∫ 1

0
du

e−2rC(u)+4iu�r�k

C(u)

]

for the calculation of the Wigner function for linear superpositions of hydrogen atom states.
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